organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hugh W. Thompson, Roger A. Lalancette* and Elizabeth M. Kikolski

Carl A. Olson Memorial Laboratories, Department of Chemistry, Rutgers University, Newark, NJ 07102, USA

Correspondence e-mail: rogerlal@andromeda.rutgers.edu

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.004 Å R factor = 0.046 wR factor = 0.113 Data-to-parameter ratio = 11.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(+)-14ba-3-Oxoglycyrrhetinic acid: catemeric hydrogen bonding in a non-racemic triterpenoid diketo acid

The title compound, (+)-10,13-dioxo-2 α ,4a β ,6a α ,6b β ,9,9,12a β -heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a α ,9,10,11,12,12a,12b α ,-13,14b α -eicosahydropicene-2 β -carboxylic acid, C₃₀H₄₄O₄, aggregates as carboxyl-to-ketone hydrogen-bonding catemers. Hydrogen bonds progress from the carboxyl group of one molecule to the remote-ring ketone group of a translationally related neighbor in an adjoining cell connected by a common *a* cell-edge [O···O = 2.766 (3) Å and O–H···O = 163°], yielding chains that extend in the [011] direction. In the crystal structure, there are also four C–H···O close contacts.

Comment

Our study of hydrogen bonding in ketocarboxylic acids encompasses crystalline compounds as small as C₆ and as large as C₃₀. The title compound, (I), is a picenoid triterpene derived from the aglycone portion of glycyrrhizic acid, isolated from licorice root (*Glycyrrhiza glabra L*.). It is a rigid, chiral, nonracemic ζ , λ -diketo acid, and we report here that (I) adopts the carboxyl-to-ketone catemeric hydrogen-bonding mode in the solid.

Fig. 1 shows the molecular structure of (I), with numbering based on the pentacyclic aromatic, picene. All the rings adopt chair conformations except the enone ring, which is necessarily flattened to a half-chair, and all the ring junctures are *trans* except that involving the enone. The conformation of the carboxyl-substituted ring places its carboxyl group equatorial, with both its methyl groups axial. The carboxyl group is rotated as shown in Fig. 1, so that the C1-C2-C15-O3 torsion angle is 6.8 (5)°.

The catemeric hydrogen-bonding geometry in (I) precludes the averaging mechanisms that underlie the disordering of C-O bond lengths and C-C-O angles in carboxyl dimers.

© 2006 International Union of Crystallography

All rights reserved

Received 24 October 2006 Accepted 31 October 2006

Figure 1

The molecular structure of (I). Displacement ellipsoids are shown at the 40% probability level. For clarity, all methyl and methylene H atoms have been omitted, but methine H atoms are retained to show the stereochemistry.

Figure 2

A partial packing diagram for (I), illustrating the catemeric hydrogen bonding. For clarity, all carbon-bound H atoms have been omitted. Displacement ellipsoids are shown at the 40% probability level. Hydrogen bonds are shown as dashed lines.

Hence, in (I) these values (Table 1) resemble those in other highly ordered carboxylic acids (Borthwick, 1980).

Fig. 2 shows the packing arrangement. Carboxyl-to-ketone hydrogen bonds among translationally related molecules produce chains that extend in the [011] direction. We characterize the geometry of this hydrogen bonding using a combination of the $H \cdots O = C$ angle and the $H \cdots O = C - C$ torsion angle. These describe the approach of the H atom to the receptor O in terms of its deviation from, respectively, C=O axiality (ideal = 120°) and planarity with the carbonyl group (ideal = 0°). In (I), these angles are H4–O1A–C10A = 139° and H4-O1A-C10A-C9A = 7°. By contrast, the isomer of (I) we have previously described (Brunskill et al., 1999) has β (cis) stereochemistry at C14B, which produces a marked molecular curvature and an axial carboxyl group, leading to hydrogen bonding seriously distorted from coplanarity, described by approach angles of 127 and -52° . This distortion from ideal angles in the case of the cis epimer is not

reflected in the packing efficiencies of the two compounds, whose densities are 1.233 Mg m⁻³ at 298 K for the *cis* epimer versus 1.238 Mg m⁻³ at 100 K for (I).

In the crystal structure, there are four intermolecular C- $H \cdots O$ close contacts (Table 2), with distances within the 2.4– 2.7 Å range which we routinely survey for such packing interactions (Steiner, 1997).

Experimental

Commercial 18 β -glycyrrhetinic acid, of known absolute configuration (Klyne & Buckingham, 1978), was obtained from ICN Pharmaceuticals, Costa Mesa, CA, USA. Jones oxidation provided the $C14b\beta$ material (Brunskill et al., 1999), which was then epimerized by refluxing with acetic acid/HCl to yield (I), of known positive rotation (Logemann et al., 1957), crystallized from acetic acid (m.p. 598 K). The solid-state (KBr) IR spectrum of (I) has C=O absorptions at 1721 and 1686 cm⁻¹ conforming to shifts typical of catemers and due, respectively, to removal of hydrogen bonding from carboxyl C=O and addition of hydrogen bonding to the saturated ketone. In CHCl₃ solution these coalesce to a single peak centered at 1699 cm^{-1} , consistent with a dimerically hydrogen-bonded carboxyl. The enone system appears normally at 1655 and 1638 cm⁻¹ in KBr and 1658 and 1621 cm^{-1} in CHCl₃.

Crystal data

$= 628.39 (3) \text{ Å}^3$
= 1
$_{\rm x} = 1.238 {\rm Mg m}^{-3}$
$I K \alpha$ radiation
$= 0.63 \text{ mm}^{-1}$
= 100 (2) K
rallelepiped, colorless
$28 \times 0.14 \times 0.09 \text{ mm}$

Data collection

Bruker SMART CCD APEX-II area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.843, \ T_{\max} = 0.945$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0454P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.046$	+ 0.3681P]
$wR(F^2) = 0.113$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
3702 reflections	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
315 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Absolute structure: Flack (1983)
	1651 Friedel pairs

Flack parameter: 0.2 (3)

8622 measured reflections

 $R_{\rm int}=0.026$

 $\theta_{\rm max} = 67.7^\circ$

3702 independent reflections

3345 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

O3-C15	1.206 (4)	O4-C15	1.334 (4)
O3-C15-C2	126.4 (3)	O4-C15-C2	111.5 (3)

Table 2	
Hydrogen-bond and close-contact geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4-H4\cdots O1^{i}$	0.84	1.95	2.766 (3)	163
$C7-H7A\cdots O2^{ii}$	0.99	2.66	3.579 (4)	155
$C17 - H17C \cdot \cdot \cdot O3^{iii}$	0.98	2.64	3.575 (4)	159
$C20-H20A\cdots O4^{iv}$	0.98	2.46	3.304 (4)	144
$C21 - H21B \cdots O4^{v}$	0.98	2.69	3.225 (4)	115

Symmetry codes: (i) x, y + 1, z + 1; (ii) x, y - 1, z; (iii) x - 1, y - 1, z; (iv) x, y - 1, z - 1; (v) x - 1, y - 1, z - 1.

All H atoms for (I) were found in electron density difference maps. The O-bound H atom was constrained to an idealized position with O-H distance fixed at 0.84 Å and $U_{\rm iso}(H) = 1.5U_{\rm eq}(O)$. The methyl H atoms were placed in ideally staggered positions with C-H distances of 0.98 Å and $U_{\rm iso}(H) = 1.5U_{\rm eq}(C)$. The methylene and methine H atoms were placed in geometrically idealized positions and constrained to ride on their parent C atoms with C-H distances of 0.99 and 1.00 Å, respectively, and $U_{\rm iso}(H) = 1.2U_{\rm eq}(C)$. The absolute configuration is known by reference to the known chirality of the enantiopure acid employed and is consistent with the rather imprecise experimental Flack (1983) parameter.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

HWT is grateful to Professor Gree Loober Spoog for helpful consultations. The authors acknowledge support by NSF-CRIF #0443538 and the Rutgers Academic Excellence Fund.

References

Germany.

Borthwick, P. W. (1980). Acta Cryst. B36, 628-632.

- Bruker (2000). SHELXTL (Version 6.10), SMART (WNT/2000, Version 5.622) and SAINT-Plus (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Brunskill, A. P. J., Thompson, H. W. & Lalancette, R. A. (1999). Acta Cryst. C55, 1902–1905.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Klyne, W. & Buckingham, J. (1978). Atlas of Stereochemistry: Absolute Configurations of Organic Molecules, 2nd ed., Vol. 1, p. 117. New York: Oxford University Press.
- Logemann, W., Lauria, F. & Tosolini, G. (1957). *Chem. Ber.* **90**, 601–604. Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. Release 97-2.
- University of Göttingen, Germany. Sheldrick, G. M. (2001). SADABS. Version 2. University of Göttingen,
- Steiner, T. (1997). Chem. Commun. pp. 727-734.